In the field of sustainability transitions, temporality has recently received increased attention, specifically with regard to understanding acceleration of transitions. Acceleration of sustainability transitions is needed, to minimize the risks of global crises, and so the question is how these transitions can be accelerated. To answer this question, we use the technological innovation systems (TIS) approach to better understand the underlying processes. The central argument of this paper is that the pace of development in TIS, which ultimately have an impact on sustainability transitions, strongly depends on the local context in which the technologies are embedded in. Technologies that are little context-dependent can be produced in series; they do not need to adapt to local contingencies and can be easily substituted by more efficient and up-to-date technology - in this paper we refer to these as generic technologies. Conversely, technologies that are strongly dependent on the local context always need to be configured with regard to specific local contingencies - we refer to these as configurational technologies. This differentiation has repercussions on the defining pillars of technological innovation systems: Higher local context dependence slows down the pace of development of configurational TIS. The differentiation is illustrated by comparing electricity and heat innovation systems in Germany. An analysis based on literature as well as empirical case studies shows that the rather generically structured Solar PV and onshore wind are developing faster toward decarbonization than the configurationally structured heat TIS. The distinction between generic technological innovation systems and configurational technological innovation systems is helpful to better understand innovation system development and design supportive policies.
Power converters are among the most frequently failing components of wind turbines. Despite their massive economic impact, the actual causes and mechanisms underlying these failures have remained in the dark for many years. In view of this situation, a large consortium of three research institutes and 16 companies, including wind-turbine and component manufacturers, operators and maintenance-service providers has joined forces to identify the main causes and driving factors of the power-converter failures in wind turbines to create a basis for effective remedial measures. The present paper summarizes and discusses the results of this research initiative, which have been achieved through the evaluation of converter-specific failure and operating data of a large and diverse worldwide wind-turbine fleet, field measurements as well as post-mortem investigation of returned converter components. A key conclusion of the work is that the thermal-cycling induced fatigue of bond-chip contacts and die-attach solder, which is a known issue in other fields of power-electronics applications and which has been widely assumed to be the principle damage mechanisms also in wind turbines, is no relevant contributor to the observed converter failures in this application. Instead, the results indicate that environmental factors such as humidity and contamination but also design and quality issues as well as human errors play an important part in the incidence of these failures.